Generalized orbifold Euler characteristics of symmetric orbifolds and covering spaces
نویسندگان
چکیده
منابع مشابه
Generalized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملCovering Spaces of Arithmetic 3-orbifolds
This paper investigates properties of finite sheeted covering spaces of arithmetic hyperbolic 3-orbifolds (see §2). The main motivation is a central unresolved question in the theory of closed hyperbolic 3-manifolds; namely whether a closed hyperbolic 3-manifold is virtually Haken. Various strengthenings of this have also been widely studied. Of specific to interest to us is the question of whe...
متن کاملOrbifold Euler Characteristics and the Number of Commuting M-tuples in the Symmetric Groups
Generating functions for the number of commuting m-tuples in the symmetric groups are obtained. We define a natural sequence of “orbifold Euler characteristics” for a finite group G acting on a manifold X . Our definition generalizes the ordinary Euler characteristic of X/G and the string-theoretic orbifold Euler characteristic. Our formulae for commuting m-tuples underlie formulas that general...
متن کاملOrbifold Euler Characteristics for Dual Invertible Polynomials
To construct mirror symmetric Landau–Ginzburg models, P. Berglund, T. Hübsch and M. Henningson considered a pair (f, G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair (f̃ , G̃). Here we study the reduced orbifold Euler characteristics of the Milnor fibers of f and f̃ with the actions of the groups G and G̃ respectively and show that they ...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebraic & Geometric Topology
سال: 2003
ISSN: 1472-2739,1472-2747
DOI: 10.2140/agt.2003.3.791